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Abstract 
 
We utilize the T=0 transport theory for resistivity 𝑅 (𝛼 𝐺-1where G is the 

conductance), for molecular assemblies connected to metallic leads. Following the early 
work of Rousseau et al., which gave G-1 as a force-force correlation function 𝑅 =< F�⃗  F�⃗ >
, McCaskill and March introduced a denominator we shall denote by 1- b, where b takes 
account of bound states. Though for molecular assemblies, explicit calculation of both < 
FF> and b present difficulties for potential scattering theory we have adapted different 
models put forward in the literature to extract b and show that is highly oscillatory. In the 
case of the Brouwer model of electron pumping, when coulomb blockade is nor operative, 
one-electron theory, such as the treatment of McCaskil and March is appropriate. 
Transcending that however, we suspect that proximity to a metal-insulator transition is a 
reason why conductances are often over estimated by orders of magnitude in current 
treatments of molecular electronics set-ups.  
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1. Introduction  
 

Impurity scattering in metal systems, such as copper with a dilute concentration of 
zinc atoms, was treated quantitatively in the early work of Huang [1], who gave the 
resistivity R, in the linear concentration regime in terms of the phase shifts, 𝛿𝑙(EF) at the 
Fermi energy EF, caused by the scattering of incident plane waves from the impurity 
potential created by a single Zn atom.  

Independently, and much later, Rousseau et al. [2] gave a theory designed originally 
to treat pure liquid metals, in which the resistivity R(referred to below as RSM, which 
should be used at T=0 as electrons in metals like Na and K have almost completely 
degenerate electrons at their freezing points) was expressed as a force-force correlation 
function, namely 
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𝑅 =< F�⃗  F�⃗ >,                                                                                  (1)  
 
where explicitly, apart from a known multiplying constant  
 
 

𝑅 = ∫𝑑𝒓1𝑑𝒓2
𝜕𝑉 (𝒓1)
𝜕𝑑1

𝜕𝑉 (𝒓2)
𝜕𝑑1

𝜕𝛾(𝒓1,   𝒓2,𝐸)2

𝜕𝐸
 |𝐸𝐹�                           (2) 

 
where   𝛾(r1, r2, E) is the Dirac density matrix generated by the one-body scattering 
potential V(r) entering the correlation function denoted < F�⃗  F�⃗ > .One of us [3] subsequently 
showed that eqn. (2) reduced exactly to Huang’s formula in terms of phase shifts at the 
Fermi level EF when the multi centre liquid metal formula (2) was reduced by taking V(r)to 
be scattering off a single impurity, as treated by Huang. So while eqn. (2) gives back the 
lowest-order liquid metal resistivity theory [4] when γ is replaced by the free-electron 
density matrix, it is plainly a strong-scattering theory when 𝛾 (r1, r2, E)is generated by the 
one-body potential V(r).  

Nevertheless, the direct application of formula (2) to molecular assemblies 
connected to metallic leads represents a considerable computational effort, and we shall 
therefore appeal here, to gain insight, to a number of rather simple analytical models already 
in the literature.  

However, before doing so, it is important to stress sat this point that the RSM 
formula (2) has been transcended in the later study of McCaskill and March[5] to read:  
    
  

R=  <F
��⃗  F��⃗ >
1−b 

                     (3) 
 
 where a further correlation function b appears, which is interpreted in ref. [5] to arise 
frombound-state effects. Thus, for the present study of molecular electronics we shall write 
the conductance Gin the form of R-1 given by eqn. (3):  
 

 𝐺 = 1−𝑏
<F��⃗  F��⃗ >

                              (4) 
 
The outline of the present article is the n as follows. In section2, we shall appeal to 

the work of Brouwer [6] who was concerned with a set-up designed to simulate electron 
pumping. Brouwer’s work is important in that he proposed a generalization of Landauer’s 
formula [7], involving now derivatives of the same scattering matrix entering Landauer’s 
treatment. We propose then in section 2 a specific form of the correlation function b 
entering eqn. (4) from Brouwer’s modelling of electron pumping. By way of comparison, 
we consider in section 3 two different models, from both of which we can again extract a 
form of the factor b in eqn. (4). Section4 constitutes a summary plus proposals for future 
directions which should be fruitful, involving experimental studies as well as theory. 

 
 
2. Brouwer’s model related to eqn. (4) for conductance G 

 
Brouwer has considered a parametric electron pump through an open system, by 

means of scattering theory. As mentioned above, his main achievement is a formula for the 
pumped current in terms of the same scattering matrix entering Landauer’s formula [7]. As 
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Brouwer [6] stresses, like there sult in ref. [7]. The pumping current contains quantal 
corrections to the contribution to the current. In relation to eqn. (4),which is a focal point of 
the represent study, we proceed below to extract b as intimately quantal, from the example 
worked out by Brouwer describing a simple pump in a one-dimensional wire. In this model, 
the wire contains a tunnel barrier at 𝑥 = 0 and for the regime 0 < 𝑥 < 𝐿 𝑎  region where 
the electrostatic potential can be varied. By computing the scattering matrix and using his 
formula (8), Brouwer [6] finds the current I in his eqn. (10). From the second term in this 
equation, which he interprets as due to quantum interference, we extract a formula for the 
factor b entering the conductance Gin eqn. (4). The result is:  
 

𝑏 =  1
2𝑘𝐿

�𝑠𝑖𝑛2𝑘𝐿 –  𝜋𝑠𝑖𝑛2𝑘𝐿�                                                                               (5) 
 

The denominator of (4), as noted in ref. [7], is related to 2πk, where k2 in turn 
determines the incident energy E. The one-dimensional density of states is, in fact (2𝜋k)-1. 
The numerator (1 − 𝑏) in the conductance Gin eqn. (4) is plotted against kL using eqn. (5) 
in Fig. 1a. This numerator is zero at kL= 0, rising rapidly and thereafter exhibiting damped 
oscillatory behavior towards the large kL limit of unity.  

We believe, already, that there is interest as to whether such damped oscillatory 
behavior is to be found in real molecular assemblies connected (say) to Al leads. Finite one-
dimensional chains of atoms, with variable chain length, would seem to o.er a promising 
starting point, but at the time of writing we know of no experiment which reflects directly 
features shown in Fig.1a. Thus, from the Brouwer model, we shall turn in section 3 to two 
further models; both of which, in contrast to Brouwer, take the Landauer formula [7], cast 
now into multichannel form, as the basis for the model conductance calculations.  
 

 
3. Two further models, worked out using landauer’s transmission probability 

formula 
 

Datta and Tian[15] use the Friedelsum rule to treat symmetric molecular 
conductorsbetween two metallic pads. They got an expression for the resistance in terms of 
the number of conducting channels connecting the molecule to the metallic pads. In contrast 
to Brouwer[6], they use Landauer formula (𝐺 =  𝑒

2

𝜋ℏ
 𝑇 (𝐸𝐹))[7] as starting point. 

Comparing now with eqn. (4) we can extract both the force-force correlationas: 
 
 

< F�⃗  F�⃗ > =  ℎ
𝑒2

 𝑎𝑛𝑑 𝐺 =  𝑒
2

ℎ
 (1 − 𝑏 )                                                                       (6) 

    
 
where b= cos (𝜋Nd (see eqn.(3) of ref. [15] and Nd is related to the difference between the 
number of electrons occupying the even and odd eigenvalues). The evolution of 1-b as a 
function of Nd (the length of the device region) is plotted in Fig. 1b. The metal-insulator 
transition (b=1) is again in evidence. The results share features in common with Brouwer’s 
approach (oscillatory behavior) but also marked differences (lack of damping; this is also a 
feature of the next model in contrast to Brouwer’s model).  

If now we analyze the model treated by Gelin, Li and Koosv [16] based also on the 
Landauer formula applied to a one-dimensional tight binding model with onsite energy E0 
and nearest-neighbor hopping constant V, we can extract the conductance G proportional 
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to  e
2

𝜋 ℏ
  �1 − 𝑐𝑜𝑠2 (𝜃)� where 𝑐𝑜𝑠(𝜃)  =  𝐸 −𝐸𝐹

2𝑉
  Thus the correlation b is given by b = 

cos2(𝜃)which Extends between 0 and 1(note that in the previous model 1-b was limited 
between 0 and 2). This is a typical Landauer result with no-damping; the later is present in 
Brouwer’s model where b goes from -1 to 1 in an oscillatory (damped) manner (see Fig.1a).  
 
 
 

 
 
 
Fig. 1: (a) Extracted from the Brouwer model of one-dimensional pump [6] we plot of conductance G in eqn. 
(4) is plotted against kL using eqn.(5)of the main text. In set shows how the damped oscillation tends to the 
unity limit from above. (b) The evolution of  (1 − 𝑏) as a function of Nd from the Datta and Tian model of 
asymmetric molecule between leads [15](Nd is related to the difference between the number of electrons 
occupying the even and odd eigenvalues).  
 

 
4. Discussion, summary and proposed future directions 

 
The McCaskill-March form of conductance G at T = 0 given in eqn. (4) has been a 

focal point of the present study. But calculations of the numerator (1 − 𝑏) from first-
principles remain major computational tasks. Therefore, 1-b has been extracted from models 
in sections 2 and 3. As physical parameters are varied, pronounced oscillatory behavior of 
the numerator in eqn. (4) is the common feature among the three model sutilized here fort = 
0 conductance.  

Experimental evidence at room temperature on molecular assemblies connected to 
leads shows conductance quantization (see also recent studies by Ruitenbeck group [8]. 
Therefore, it seems clear that, from Fig.1of the present study, these models can only reflect 
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experimental behaviors in the low temperature regime. However, we note next the so-called 
Sharvin(S) limit giving GS as: 

 
 

𝐺𝑆 =  2𝑒
2

ℎ
 (𝑘𝐹𝑎𝑚𝑖𝑛)2 ∕ 4           (7) 

 
where kF is the Fermi wave number and amin the effective minimal contact radius(see also 
ref.[9]) These workers show the conductance in units of 2e2/h from calculations using free-
electron and tight-binding models, versus(kFamin)2 . Their results appear to show oscillatory 
behavior around a corrected Sharvin conductance [10], which encourages us to believe that 
eqn. (4) is again relevant at low temperatures. The actual conductance is always expected to 
lie below the Sharvin value, and this is what the authors of ref. [9] .find in their theoretical 
studies. Corrections to the Sharvin treatment are discussed in, for example ref. [11].  

Brouwer’s treatment takes as starting point a result from ref. [12]. For an electron 
pump, he establishes the way the pumping current I is determined by the parametric 
derivatives of the scattering matrix S.  

One point that emerges immediately from the I-V relationship of Brouwer is that the 
current is not quantized, unlike the case of electron pumps that operate in the regime of 
Coulomb blockade [13]. Note also that when Aleiner and Andreeev[14] earlier considered 
adiabatic class of pumping in almost open dots, still highly relevant to the McCaskill-March 
inverse-transport theory, one involving the Kubo current-current correlation function and the 
other the force-force correlation function introduced in eqns. (1) and (2). The difference 
between Aleiner and Andreev and the later study of Brouwer is the question of quantization. 
Brouwer notes that he is dealing with a system well coupled to the leads, and he argues that 
then, to a first approximation one can use a model of non-interacting electrons, as in the 
study of McCaskill and March. The Coulomb blockade being lifted is an essential 
requirement for the current I not to be quantized, as in the Brouwer treatment.  
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